LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - APRIL 2024

PCH3MC03 - MOLECULAR SPECTROSCOPY

Date: 06-04-2024 Dept. No. Time: 09:00 AM - 12:00 NOON	Max.: 100 Mark		
SECTION A – K1 (CO1)			
Answer ALL the questions	$(5 \times 1 = 5)$		
-	(0 11 0)		
Among the following molecules which has $I_a = 0$ and $I_b = I_c$: chloroacecty chloride.	lene, methane, vinyl		
Which type of molecule obeys the rule of mutual exclusion principle?			
Mention the importance of meta stable peaks.			
What is a chromogen? When does it become a dye?			
Name the energy shift in Mossbauer spectroscopy observed when the electronic around the absorber and source nuclei are different.	configuration		
SECTION A – K2 (CO1)			
Answer ALL the questions	$(5 \times 1 = 5)$		
Answer the following			
1 1	nergies.		
The precessional frequency of ¹³ C nucleus will be, if that of proton is 600 MHz at 14.1 tesla.			
	on from spherical		
symmetry in NQR spectroscopy.			
SECTION B – K3 (CO2)			
Answer any THREE of the following	$(3 \times 10 = 30)$		
	•		
1 ` '	n ⁻¹ , respectively.		
-	(5+5)		
	ention their		
	(5+5)		
	(5.5)		
a) Fluorescence spectroscopy b) pH variation study using UV visible spectros	scopy (5+5)		
	(5 5)		
'	(5+5)		
The Mossbauer spectrum of $K_4[Fe(CN)_6]$ consists of a single line but $K_4[Fe(CN)_6]$ $K_3[Fe(CN)_6]$ consist of two lines each. Explain.	osnoj and		
	SECTION A – K1 (CO1) Answer ALL the questions Answer the following Among the following molecules which has I _a = 0 and I _b = I _c : chloroacecty chloride. Which type of molecule obeys the rule of mutual exclusion principle? Mention the importance of meta stable peaks. What is a chromogen? When does it become a dye? Name the energy shift in Mossbauer spectroscopy observed when the electronic around the absorber and source nuclei are different. SECTION A – K2 (CO1) Answer ALL the questions Answer the following Write the relationship between thermochemical and spectroscopic dissociation et How are isotopic peaks useful for the study of organic compounds? The precessional frequency of ¹³ C nucleus will be, if that of proton is 60 What is Nuclear Overhauser effect? Mention the parameter which measures the deviation of nuclear charge distributis symmetry in NQR spectroscopy. SECTION B – K3 (CO2) Answer any THREE of the following (a) Why are Q-branch lines in the vibrational spectrum of linear molecules found (b) The successive line separation in ¹² C ¹⁶ O and ^x C ¹⁶ O are 3.8435 and 3.6735 cn Calculate the isotopic mass of ^x C. (a) What are the types of fragmentation peaks obtained in mass spectrometry? M significance. (b) Explain the working principle of ESI mass spectrometry. Mention its merits. Write a short note on the following. a) Fluorescence spectroscopy b) pH variation study using UV visible spectros Explain the following techniques in detail with suitable examples. i) COSY ii) HETCOR The Mossbauer spectrum of K4[Fe(CN) ₆] consists of a single line but K4[Fe(CN) ₆] The Mossbauer spectrum of K4[Fe(CN) ₆] consists of a single line but K4[Fe(CN) ₆]		

	SECTION C – K4 (CO3) Answer any TWO of the following $(2 \times 12.5 = 25)$			
8	(a) Obtain the expression for finding the most populated rotational level of a rigid rotor.			
	(b) Discuss the effect of inter and intra molecular hydrogen bonding on the position of vibrational			
	frequency of O-H in a compound. (7.5+5)			
9	(i) Why Stokes lines are more intense than anti-Stokes lines?			
	(ii) What is the recoil energy of 57 Fe nucleus if the energy of the emitted γ -rays from the first excited			
	state is 14.4 keV? (7.5+5)			
10	(a) Describe tandem mass spectrometry with a specific example. (5.5)			
	(b) Calculate the λ_{max} of the following compounds. (4+3)			
	i) COCH ₃			
	ii)			
	OC_2H_5			
	OH			
11	a) Write a short note on ³¹ P NMR spectroscopy. What will be the spectral pattern of HPF ₂ molecule?			
	b) Calculate the ESR hyperfine splitting of benzene and ethyl radicals. (2.5+4)+(3+3)			
SECTION D – K5 (CO4)				
	Answer any ONE of the following $(1 \times 15 = 15)$			
12	(a) Calculate the room temperature population of NO in $v = 1$ relative to $v = 0$. Given that the			
	fundamental wave number is 2169 cm ⁻¹ .			
	(4+6+5)			
	(b) Explain the theory of NQR spectroscopy.			
	(c) The fundamental band, first and second overtones of a molecule appear at 2886, 5668 and 8347			
	cm ⁻¹ respectively. Determine the vibrational wave number and anharmonicity constant of the			
	molecule.			
13	(a) Identify the compound from the following spectral data. (7)			
	Mol Formula: C ₃ H ₇ NO			
	UV: 238 nm, $\varepsilon = 10500 \text{ lmol}^{-1} \text{cm}^{-1}$			
	IR: 3428 (m), 2940-2855 (w), 1618 (s), 1452 (w)			
	NMR: 8.18 ppm, s (1H); 2.70 ppm, s (3H); 1.9 ppm, s (3H).			
	(b) Enumerate the various techniques used to refine complex NMR spectra into first order spectra.			
	(8)			
SECTION E – K6 (CO5)				

(a) Explain the appearance of P and R branch lines in the vibrational spectrum of a diatomic rotor obeying Born-Oppenheimer approximation. (10+4+6)

Answer any ONE of the following

- (b) Diagrammatically represent the in plane and out of plane deformations observed in a molecule.
- (c) Determine the number of NQR transitions for ${}_{5}B^{11}$ (I=3/2) assuming the asymmetry parameter, η =0.
- (a) What are the advantages of ¹H coupled ¹³C NMR over ¹H decoupled ¹³C NMR technique? Explain with an example.
 - (b) Draw the mass spectral fragmentation patterns of (i) toluene (ii) methylcyclohexylketone

 $(1 \times 20 = 20)$

(c) Write a short note on MRI imaging.	(6+9+5)
	